1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
|
// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto3";
package google.cloud.timeseriesinsights.v1;
import "google/api/annotations.proto";
import "google/api/client.proto";
import "google/api/field_behavior.proto";
import "google/api/resource.proto";
import "google/protobuf/duration.proto";
import "google/protobuf/empty.proto";
import "google/protobuf/timestamp.proto";
import "google/rpc/status.proto";
option cc_enable_arenas = true;
option go_package = "google.golang.org/genproto/googleapis/cloud/timeseriesinsights/v1;timeseriesinsights";
option java_multiple_files = true;
option java_outer_classname = "TimeseriesInsightsProto";
option java_package = "com.google.cloud.timeseriesinsights.v1";
service TimeseriesInsightsController {
option (google.api.default_host) = "timeseriesinsights.googleapis.com";
option (google.api.oauth_scopes) = "https://www.googleapis.com/auth/cloud-platform";
// Lists [DataSets][google.cloud.timeseriesinsights.v1.DataSet] under the project.
//
// The order of the results is unspecified but deterministic. Newly created
// [DataSets][google.cloud.timeseriesinsights.v1.DataSet] will not necessarily be added to the end
// of this list.
rpc ListDataSets(ListDataSetsRequest) returns (ListDataSetsResponse) {
option (google.api.http) = {
get: "/v1/{parent=projects/*/locations/*}/datasets"
additional_bindings {
get: "/v1/{parent=projects/*}/datasets"
}
};
option (google.api.method_signature) = "parent";
}
// Create a [DataSet][google.cloud.timeseriesinsights.v1.DataSet] from data stored on Cloud
// Storage.
//
// The data must stay immutable while we process the
// [DataSet][google.cloud.timeseriesinsights.v1.DataSet] creation; otherwise, undefined outcomes
// might result. For more information, see [DataSet][google.cloud.timeseriesinsights.v1.DataSet].
rpc CreateDataSet(CreateDataSetRequest) returns (DataSet) {
option (google.api.http) = {
post: "/v1/{parent=projects/*/locations/*}/datasets"
body: "dataset"
additional_bindings {
post: "/v1/{parent=projects/*}/datasets"
body: "dataset"
}
};
option (google.api.method_signature) = "parent,dataset";
}
// Delete a [DataSet][google.cloud.timeseriesinsights.v1.DataSet] from the system.
//
// **NOTE**: If the [DataSet][google.cloud.timeseriesinsights.v1.DataSet] is still being
// processed, it will be aborted and deleted.
rpc DeleteDataSet(DeleteDataSetRequest) returns (google.protobuf.Empty) {
option (google.api.http) = {
delete: "/v1/{name=projects/*/locations/*/datasets/*}"
additional_bindings {
delete: "/v1/{name=projects/*/datasets/*}"
}
};
option (google.api.method_signature) = "name";
}
// Append events to a `LOADED` [DataSet][google.cloud.timeseriesinsights.v1.DataSet].
rpc AppendEvents(AppendEventsRequest) returns (AppendEventsResponse) {
option (google.api.http) = {
post: "/v1/{dataset=projects/*/locations/*/datasets/*}:appendEvents"
body: "*"
additional_bindings {
post: "/v1/{dataset=projects/*/datasets/*}:appendEvents"
body: "*"
}
};
option (google.api.method_signature) = "dataset,events";
}
// Execute a Timeseries Insights query over a loaded
// [DataSet][google.cloud.timeseriesinsights.v1.DataSet].
rpc QueryDataSet(QueryDataSetRequest) returns (QueryDataSetResponse) {
option (google.api.http) = {
post: "/v1/{name=projects/*/locations/*/datasets/*}:query"
body: "*"
additional_bindings {
post: "/v1/{name=projects/*/datasets/*}:query"
body: "*"
}
};
}
// Evaluate an explicit slice from a loaded [DataSet][google.cloud.timeseriesinsights.v1.DataSet].
rpc EvaluateSlice(EvaluateSliceRequest) returns (EvaluatedSlice) {
option (google.api.http) = {
post: "/v1/{dataset=projects/*/locations/*/datasets/*}:evaluateSlice"
body: "*"
additional_bindings {
post: "/v1/{dataset=projects/*/datasets/*}:evaluateSlice"
body: "*"
}
};
}
// Evaluate an explicit timeseries.
rpc EvaluateTimeseries(EvaluateTimeseriesRequest) returns (EvaluatedSlice) {
option (google.api.http) = {
post: "/v1/{parent=projects/*/locations/*}/datasets:evaluateTimeseries"
body: "*"
additional_bindings {
post: "/v1/{parent=projects/*}/datasets:evaluateTimeseries"
body: "*"
}
};
}
}
// Mapping of BigQuery columns to timestamp, group_id and dimensions.
message BigqueryMapping {
// The column which should be used as the event timestamps. If not specified
// 'Timestamp' is used by default. The column may have TIMESTAMP or INT64
// type (the latter is interpreted as microseconds since the Unix epoch).
string timestamp_column = 1;
// The column which should be used as the group ID (grouping events into
// sessions). If not specified 'GroupId' is used by default, if the input
// table does not have such a column, random unique group IDs are
// generated automatically (different group ID per input row).
string group_id_column = 2;
// The list of columns that should be translated to dimensions. If empty,
// all columns are translated to dimensions. The timestamp and group_id
// columns should not be listed here again. Columns are expected to have
// primitive types (STRING, INT64, FLOAT64 or NUMERIC).
repeated string dimension_column = 3;
}
// A data source consists of multiple [Event][google.cloud.timeseriesinsights.v1.Event] objects stored on
// Cloud Storage. Each Event should be in JSON format, with one Event
// per line, also known as JSON Lines format.
message DataSource {
// Data source URI.
//
// 1) Google Cloud Storage files (JSON) are defined in the following form.
// `gs://bucket_name/object_name`. For more information on Cloud Storage URIs,
// please see https://cloud.google.com/storage/docs/reference-uris.
string uri = 1;
// For BigQuery inputs defines the columns that should be used for dimensions
// (including time and group ID).
BigqueryMapping bq_mapping = 2;
}
// A collection of data sources sent for processing.
message DataSet {
option (google.api.resource) = {
type: "timeseriesinsights.googleapis.com/Dataset"
pattern: "projects/{project}/datasets/{dataset}"
pattern: "projects/{project}/locations/{location}/datasets/{dataset}"
};
// DataSet state.
enum State {
// Unspecified / undefined state.
STATE_UNSPECIFIED = 0;
// Dataset is unknown to the system; we have never seen this dataset before
// or we have seen this dataset but have fully GC-ed it.
UNKNOWN = 1;
// Dataset processing is pending.
PENDING = 2;
// Dataset is loading.
LOADING = 3;
// Dataset is loaded and can be queried.
LOADED = 4;
// Dataset is unloading.
UNLOADING = 5;
// Dataset is unloaded and is removed from the system.
UNLOADED = 6;
// Dataset processing failed.
FAILED = 7;
}
// The dataset name, which will be used for querying, status and unload
// requests. This must be unique within a project.
string name = 1;
// [Data dimension names][google.cloud.timeseriesinsights.v1.EventDimension.name] allowed for this `DataSet`.
//
// If left empty, all dimension names are included. This field works as a
// filter to avoid regenerating the data.
repeated string data_names = 2;
// Input data.
repeated DataSource data_sources = 3;
// Dataset state in the system.
State state = 4;
// Dataset processing status.
google.rpc.Status status = 5;
// Periodically we discard dataset [Event][google.cloud.timeseriesinsights.v1.Event] objects that have
// timestamps older than 'ttl'. Omitting this field or a zero value means no
// events are discarded.
google.protobuf.Duration ttl = 6;
}
// Represents an event dimension.
message EventDimension {
// Dimension name.
//
// **NOTE**: `EventDimension` names must be composed of alphanumeric
// characters only, and are case insensitive. Unicode characters are *not*
// supported. The underscore '_' is also allowed.
string name = 1;
// Dimension value.
//
// **NOTE**: All entries of the dimension `name` must have the same `value`
// type.
oneof value {
// String representation.
//
// **NOTE**: String values are case insensitive. Unicode characters are
// supported.
string string_val = 2;
// Long representation.
int64 long_val = 3;
// Bool representation.
bool bool_val = 4;
// Double representation.
double double_val = 5;
}
}
// Represents an entry in a data source.
//
// Each Event has:
//
// * A timestamp at which the event occurs.
// * One or multiple dimensions.
// * Optionally, a group ID that allows clients to group logically related
// events (for example, all events representing payments transactions done by
// a user in a day have the same group ID). If a group ID is not provided, an
// internal one will be generated based on the content and `eventTime`.
//
// **NOTE**:
//
// * Internally, we discretize time in equal-sized chunks and we assume an
// event has a 0
// [TimeseriesPoint.value][google.cloud.timeseriesinsights.v1.TimeseriesPoint.value]
// in a chunk that does not contain any occurrences of an event in the input.
// * The number of Events with the same group ID should be limited.
// * Group ID *cannot* be queried.
// * Group ID does *not* correspond to a user ID or the like. If a user ID is of
// interest to be queried, use a user ID `dimension` instead.
message Event {
// Event dimensions.
repeated EventDimension dimensions = 1;
// Event group ID.
//
// **NOTE**: JSON encoding should use a string to hold a 64-bit integer value,
// because a native JSON number holds only 53 binary bits for an integer.
int64 group_id = 2;
// Event timestamp.
google.protobuf.Timestamp event_time = 3;
}
// Appends events to an existing DataSet.
message AppendEventsRequest {
// Events to be appended.
//
// Note:
//
// 0. The [DataSet][google.cloud.timeseriesinsights.v1.DataSet] must be shown in a `LOADED` state
// in the results of `list` method; otherwise, all events from
// the append request will be dropped, and a `NOT_FOUND` status will be
// returned.
// 0. All events in a single request must have the same
// [groupId][google.cloud.timeseriesinsights.v1.Event.group_id] if set; otherwise, an
// `INVALID_ARGUMENT` status will be returned.
// 0. If [groupId][google.cloud.timeseriesinsights.v1.Event.group_id] is not set (or 0), there
// should be only 1 event; otherwise, an `INVALID_ARGUMENT` status will be
// returned.
// 0. The events must be newer than the current time minus
// [DataSet TTL][google.cloud.timeseriesinsights.v1.DataSet.ttl] or they will be dropped.
repeated Event events = 1;
// Required. The DataSet to which we want to append to in the format of
// "projects/{project}/datasets/{dataset}"
string dataset = 2 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "timeseriesinsights.googleapis.com/Dataset"
}
];
}
// Response for an AppendEvents RPC.
message AppendEventsResponse {
// Dropped events; empty if all events are successfully added.
repeated Event dropped_events = 1;
}
// Create a DataSet request.
message CreateDataSetRequest {
// Required. Client project name which will own this DataSet in the format of
// 'projects/{project}'.
string parent = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "cloudresourcemanager.googleapis.com/Project"
}
];
// Required. Dataset to be loaded.
DataSet dataset = 2 [(google.api.field_behavior) = REQUIRED];
}
// Unload DataSet request from the serving system.
message DeleteDataSetRequest {
// Required. Dataset name in the format of "projects/{project}/datasets/{dataset}"
string name = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "timeseriesinsights.googleapis.com/Dataset"
}
];
}
// List the DataSets created by the current project.
message ListDataSetsRequest {
// Required. Project owning the DataSet in the format of "projects/{project}".
string parent = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "cloudresourcemanager.googleapis.com/Project"
}
];
// Number of results to return in the list.
int32 page_size = 2;
// Token to provide to skip to a particular spot in the list.
string page_token = 3;
}
// Created DataSets list response.
message ListDataSetsResponse {
// The list of created DataSets.
repeated DataSet datasets = 1;
// Token to receive the next page of results.
string next_page_token = 2;
}
// A categorical dimension fixed to a certain value.
message PinnedDimension {
// The name of the dimension for which we are fixing its value.
string name = 1;
// Dimension value.
//
// **NOTE**: The `value` type must match that in the data with the same
// `dimension` as name.
oneof value {
// A string value. This can be used for [dimensions][google.cloud.timeseriesinsights.v1.EventDimension], which
// have their value field set to [string_val][google.cloud.timeseriesinsights.v1.EventDimension.string_val].
string string_val = 2;
// A bool value. This can be used for [dimensions][google.cloud.timeseriesinsights.v1.EventDimension], which
// have their value field set to [bool_val][google.cloud.timeseriesinsights.v1.EventDimension.bool_val].
bool bool_val = 3;
}
}
// Parameters that control the sensitivity and other options for the time series
// forecast.
message ForecastParams {
// A time period of a fixed interval.
enum Period {
// Unknown or simply not given.
PERIOD_UNSPECIFIED = 0;
// 1 hour
HOURLY = 5;
// 24 hours
DAILY = 1;
// 7 days
WEEKLY = 2;
// 30 days
MONTHLY = 3;
// 365 days
YEARLY = 4;
}
// Optional. Penalize variations between the actual and forecasted values smaller than
// this. For more information about how this parameter affects the score, see
// the [anomalyScore](EvaluatedSlice.anomaly_score) formula.
//
// Intuitively, anomaly scores summarize how statistically significant the
// change between the actual and forecasted value is compared with what we
// expect the change to be (see
// [expectedDeviation](EvaluatedSlice.expected_deviation)). However, in
// practice, depending on the application, changes smaller than certain
// absolute values, while statistically significant, may not be important.
//
// This parameter allows us to penalize such low absolute value changes.
//
// Must be in the (0.0, inf) range.
//
// If unspecified, it defaults to 0.000001.
optional double noise_threshold = 12 [(google.api.field_behavior) = OPTIONAL];
// Optional. Specifying any known seasonality/periodicity in the time series
// for the slices we will analyze can improve the quality of the results.
//
// If unsure, simply leave it unspecified by not setting a value for this
// field.
//
// If your time series has multiple seasonal patterns, then set it to the most
// granular one (e.g. if it has daily and weekly patterns, set this to DAILY).
Period seasonality_hint = 10 [(google.api.field_behavior) = OPTIONAL];
// Optional. The length of the returned [forecasted
// timeseries][EvaluatedSlice.forecast].
//
// This duration is currently capped at 100 x
// [granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity].
//
// Example: If the detection point is set to "2020-12-27T00:00:00Z", the
// [granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity] to "3600s" and the
// horizon_duration to "10800s", then we will generate 3 time
// series points (from "2020-12-27T01:00:00Z" to "2020-12-27T04:00:00Z"), for
// which we will return their forecasted values.
//
// Note: The horizon time is only used for forecasting not for anormaly
// detection. To detect anomalies for multiple points of time,
// simply send multiple queries with those as
// [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time].
google.protobuf.Duration horizon_duration = 13 [(google.api.field_behavior) = OPTIONAL];
}
// A point in a time series.
message TimeseriesPoint {
// The timestamp of this point.
google.protobuf.Timestamp time = 1;
// The value for this point.
//
// It is computed by aggregating all events in the associated slice that are
// in the `[time, time + granularity]` range (see
// [granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity]) using the specified
// [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric].
optional double value = 2;
}
// A time series.
message Timeseries {
// The points in this time series, ordered by their timestamp.
repeated TimeseriesPoint point = 1;
}
// Forecast result for a given slice.
message EvaluatedSlice {
// Values for all categorical dimensions that uniquely identify this slice.
repeated PinnedDimension dimensions = 1;
// The actual value at the detection time (see
// [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time]).
//
// **NOTE**: This value can be an estimate, so it should not be used as a
// source of truth.
optional double detection_point_actual = 11;
// The expected value at the detection time, which is obtained by forecasting
// on the historical time series.
optional double detection_point_forecast = 12;
// How much our forecast model expects the detection point actual will
// deviate from its forecasted value based on how well it fit the input time
// series.
//
// In general, we expect the `detectionPointActual` to
// be in the `[detectionPointForecast - expectedDeviation,
// detectionPointForecast + expectedDeviation]` range. The more the actual
// value is outside this range, the more statistically significant the
// anomaly is.
//
// The expected deviation is always positive.
optional double expected_deviation = 16;
// Summarizes how significant the change between the actual and forecasted
// detection points are compared with the historical patterns observed on the
// [history][google.cloud.timeseriesinsights.v1.EvaluatedSlice.history] time series.
//
// Defined as *|a - f| / (e + nt)*, where:
//
// - *a* is the [detectionPointActual][google.cloud.timeseriesinsights.v1.EvaluatedSlice.detection_point_actual].
// - *f* is the [detectionPointForecast][google.cloud.timeseriesinsights.v1.EvaluatedSlice.detection_point_forecast].
// - *e* is the [expectedDeviation][google.cloud.timeseriesinsights.v1.EvaluatedSlice.expected_deviation].
// - *nt` is the [noiseThreshold][google.cloud.timeseriesinsights.v1.ForecastParams.noise_threshold].
//
// Anomaly scores between different requests and datasets are comparable. As
// a guideline, the risk of a slice being an anomaly based on the anomaly
// score is:
//
// - **Very High** if `anomalyScore` > 5.
// - **High** if the `anomalyScore` is in the [2, 5] range.
// - **Medium** if the `anomalyScore` is in the [1, 2) range.
// - **Low** if the `anomalyScore` is < 1.
//
// If there were issues evaluating this slice, then the anomaly score will be
// set to -1.0 and the [status][google.cloud.timeseriesinsights.v1.EvaluatedSlice.status] field will contain details on what
// went wrong.
optional double anomaly_score = 17;
// The actual values in the `[`
// [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time] `-`
// [forecastHistory][google.cloud.timeseriesinsights.v1.TimeseriesParams.forecast_history]`,`
// [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time] `]` time
// range.
//
// **NOTE**: This field is only populated if
// [returnTimeseries][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.return_timeseries] is true.
Timeseries history = 5;
// The forecasted values in the `[`
// [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time] `+`
// [granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity]`,`
// [forecastParams.horizonTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.forecast_params] `]` time
// range.
//
// **NOTE**: This field is only populated if
// [returnTimeseries][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.return_timeseries] is true.
Timeseries forecast = 10;
// Evaluation status. Contains an error message if the `anomalyScore` is < 0.
//
// Possible error messages:
//
// - **"Time series too sparse"**: The returned time series for this slice did
// not contain enough data points (we require a minimum of 10).
// - **"Not enough recent time series points"**: The time series contains the
// minimum of 10 points, but there are not enough close in time to the
// detection point.
// - **"Missing detection point data"**: There were not events to be
// aggregated within the `[detectionTime, detectionTime + granularity]` time
// interval, so we don't have an actual value with which we can compare our
// prediction.
// - **"Data retrieval error"**: We failed to retrieve the time series data
// for this slice and could not evaluate it successfully. Should be a
// transient error.
// - **"Internal server error"**: Internal unexpected error.
google.rpc.Status status = 18;
}
// Parameters that control how we slice the dataset and, optionally, filter
// slices that have some specific values on some dimensions (pinned dimensions).
message SlicingParams {
// Required. Dimensions over which we will group the events in slices. The names
// specified here come from the
// [EventDimension.name][google.cloud.timeseriesinsights.v1.EventDimension.name] field. At least
// one dimension name must be specified. All dimension names that do not exist
// in the queried `DataSet` will be ignored.
//
// Currently only dimensions that hold string values can be specified here.
repeated string dimension_names = 1 [(google.api.field_behavior) = REQUIRED];
// Optional. We will only analyze slices for which
// [EvaluatedSlice.dimensions][google.cloud.timeseriesinsights.v1.EvaluatedSlice.dimensions] contain all of the
// following pinned dimensions. A query with a pinned dimension `{ name: "d3"
// stringVal: "v3" }` will only analyze events which contain the dimension `{
// name: "d3" stringVal: "v3" }`.
// The [pinnedDimensions][google.cloud.timeseriesinsights.v1.SlicingParams.pinned_dimensions] and
// [dimensionNames][google.cloud.timeseriesinsights.v1.SlicingParams.dimension_names] fields can **not**
// share the same dimension names.
//
// Example a valid specification:
//
// ```json
// {
// dimensionNames: ["d1", "d2"],
// pinnedDimensions: [
// { name: "d3" stringVal: "v3" },
// { name: "d4" stringVal: "v4" }
// ]
// }
// ```
//
// In the previous example we will slice the dataset by dimensions "d1",
// "d2", "d3" and "d4", but we will only analyze slices for which "d3=v3" and
// "d4=v4".
//
// The following example is **invalid** as "d2" is present in both
// dimensionNames and pinnedDimensions:
//
// ```json
// {
// dimensionNames: ["d1", "d2"],
// pinnedDimensions: [
// { name: "d2" stringVal: "v2" },
// { name: "d4" stringVal: "v4" }
// ]
// }
// ```
repeated PinnedDimension pinned_dimensions = 2 [(google.api.field_behavior) = OPTIONAL];
}
// Parameters that control how we construct the time series for each slice.
message TimeseriesParams {
// Methods by which we can aggregate multiple events by a given
// [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric].
enum AggregationMethod {
// Unspecified.
AGGREGATION_METHOD_UNSPECIFIED = 0;
// Aggregate multiple events by summing up the values found in the
// [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric] dimension.
SUM = 1;
// Aggregate multiple events by averaging out the values found in the
// [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric] dimension.
AVERAGE = 2;
}
// Required. How long should we go in the past when fetching the timeline used for
// forecasting each slice.
//
// This is used in combination with the
// [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time] parameter.
// The time series we construct will have the following time range:
// `[detectionTime - forecastHistory, detectionTime + granularity]`.
//
// The forecast history might be rounded up, so that a multiple of
// `granularity` is used to process the query.
//
// Note: If there are not enough events in the
// `[detectionTime - forecastHistory, detectionTime + granularity]` time
// interval, the slice evaluation can fail. For more information, see
// [EvaluatedSlice.status][google.cloud.timeseriesinsights.v1.EvaluatedSlice.status].
google.protobuf.Duration forecast_history = 1 [(google.api.field_behavior) = REQUIRED];
// Required. The time granularity of the time series (on the x-axis). Each time series
// point starting at time T will aggregate all events for a particular slice
// in *[T, T + granularity)* time windows.
//
// Note: The aggregation is decided based on the
// [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric] parameter.
//
// This granularity defines the query-time aggregation windows and is not
// necessarily related to any event time granularity in the raw data (though
// we do recommend that the query-time granularity is not finer than the
// ingestion-time one).
//
// Currently, the minimal supported granularity is 10 seconds.
google.protobuf.Duration granularity = 2 [(google.api.field_behavior) = REQUIRED];
// Optional. Denotes the [name][google.cloud.timeseriesinsights.v1.EventDimension.name] of a numerical
// dimension that will have its values aggregated to compute the y-axis of the
// time series.
//
// The aggregation method must also be specified by setting the
// [metricAggregationMethod][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric_aggregation_method]
// field.
//
// Note: Currently, if the aggregation method is unspecified, we will
// default to SUM for backward compatibility reasons, but new implementations
// should set the
// [metricAggregationMethod][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric_aggregation_method]
// explicitly.
//
// If the metric is unspecified, we will use the number of events that each
// time series point contains as the point value.
//
// Example: Let's assume we have the following three events in our dataset:
// ```json
// {
// eventTime: "2020-12-27T00:00:00Z",
// dimensions: [
// { name: "d1" stringVal: "v1" },
// { name: "d2" stringVal: "v2" }
// { name: "m1" longVal: 100 }
// { name: "m2" longVal: 11 }
// ]
// },
// {
// eventTime: "2020-12-27T00:10:00Z",
// dimensions: [
// { name: "d1" stringVal: "v1" },
// { name: "d2" stringVal: "v2" }
// { name: "m1" longVal: 200 }
// { name: "m2" longVal: 22 }
// ]
// },
// {
// eventTime: "2020-12-27T00:20:00Z",
// dimensions: [
// { name: "d1" stringVal: "v1" },
// { name: "d2" stringVal: "v2" }
// { name: "m1" longVal: 300 }
// { name: "m2" longVal: 33 }
// ]
// }
// ```
//
// These events are all within the same hour, spaced 10 minutes between each
// of them. Assuming our [QueryDataSetRequest][google.cloud.timeseriesinsights.v1.QueryDataSetRequest] had set
// [slicingParams.dimensionNames][google.cloud.timeseriesinsights.v1.SlicingParams.dimension_names] to ["d1",
// "d2"] and [timeseries_params.granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity] to
// "3600s", then all the previous events will be aggregated into the same
// [timeseries point][google.cloud.timeseriesinsights.v1.TimeseriesPoint].
//
// The time series point that they're all part of will have the
// [time][google.cloud.timeseriesinsights.v1.TimeseriesPoint.time] set to "2020-12-27T00:00:00Z" and the
// [value][google.cloud.timeseriesinsights.v1.TimeseriesPoint.value] populated based on this metric field:
//
// - If the metric is set to "m1" and metric_aggregation_method to SUM, then
// the value of the point will be 600.
// - If the metric is set to "m2" and metric_aggregation_method to SUM, then
// the value of the point will be 66.
// - If the metric is set to "m1" and metric_aggregation_method to AVERAGE,
// then the value of the point will be 200.
// - If the metric is set to "m2" and metric_aggregation_method to AVERAGE,
// then the value of the point will be 22.
// - If the metric field is "" or unspecified, then the value of the point
// will be 3, as we will simply count the events.
optional string metric = 4 [(google.api.field_behavior) = OPTIONAL];
// Optional. Together with the [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric] field, specifies how
// we will aggregate multiple events to obtain the value of a time series
// point. See the [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric] documentation for more
// details.
//
// If the metric is not specified or "", then this field will be ignored.
AggregationMethod metric_aggregation_method = 5 [(google.api.field_behavior) = OPTIONAL];
}
// Request for performing a query against a loaded DataSet.
message QueryDataSetRequest {
// Required. Loaded DataSet to be queried in the format of
// "projects/{project}/datasets/{dataset}"
string name = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "timeseriesinsights.googleapis.com/Dataset"
}
];
// Required. This is the point in time that we want to probe for anomalies.
//
// The corresponding [TimeseriesPoint][google.cloud.timeseriesinsights.v1.TimeseriesPoint] is referred to as the
// detection point.
//
// **NOTE**: As with any other time series point, the value is given by
// aggregating all events in the slice that are in the
// [detectionTime, detectionTime + granularity) time interval, where
// the granularity is specified in the
// [timeseriesParams.granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity] field.
google.protobuf.Timestamp detection_time = 11 [(google.api.field_behavior) = REQUIRED];
// How many slices are returned in
// [QueryDataSetResponse.slices][google.cloud.timeseriesinsights.v1.QueryDataSetResponse.slices].
//
// The returned slices are tentatively the ones with the highest
// [anomaly scores][google.cloud.timeseriesinsights.v1.EvaluatedSlice.anomaly_score] in the dataset that match
// the query, but it is not guaranteed.
//
// Reducing this number will improve query performance, both in terms of
// latency and resource usage.
//
// Defaults to 50.
optional int32 num_returned_slices = 13;
// Parameters controlling how we will split the dataset into the slices that
// we will analyze.
SlicingParams slicing_params = 9;
// Parameters controlling how we will build the time series used to predict
// the [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time] value for each slice.
TimeseriesParams timeseries_params = 10;
// Parameters that control the time series forecasting models, such as the
// sensitivity of the anomaly detection.
ForecastParams forecast_params = 5;
// If specified, we will return the actual and forecasted time for all
// returned slices.
//
// The time series are returned in the
// [EvaluatedSlice.history][google.cloud.timeseriesinsights.v1.EvaluatedSlice.history] and
// [EvaluatedSlice.forecast][google.cloud.timeseriesinsights.v1.EvaluatedSlice.forecast] fields.
bool return_timeseries = 8;
}
// Response for a query executed by the system.
message QueryDataSetResponse {
// Loaded DataSet that was queried.
string name = 1;
// Slices sorted in descending order by their
// [anomalyScore][google.cloud.timeseriesinsights.v1.EvaluatedSlice.anomaly_score].
//
// At most [numReturnedSlices][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.num_returned_slices]
// slices are present in this field.
repeated EvaluatedSlice slices = 3;
}
// Request for evaluateSlice.
message EvaluateSliceRequest {
// Required. Loaded DataSet to be queried in the format of
// "projects/{project}/datasets/{dataset}"
string dataset = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "timeseriesinsights.googleapis.com/Dataset"
}
];
// Required. Dimensions with pinned values that specify the slice for which we will
// fetch the time series.
repeated PinnedDimension pinned_dimensions = 2 [(google.api.field_behavior) = REQUIRED];
// Required. This is the point in time that we want to probe for anomalies.
//
// See documentation for
// [QueryDataSetRequest.detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time].
google.protobuf.Timestamp detection_time = 3 [(google.api.field_behavior) = REQUIRED];
// Parameters controlling how we will build the time series used to predict
// the [detectionTime][google.cloud.timeseriesinsights.v1.EvaluateSliceRequest.detection_time] value for this slice.
TimeseriesParams timeseries_params = 4;
// Parameters that control the time series forecasting models, such as the
// sensitivity of the anomaly detection.
ForecastParams forecast_params = 5;
}
// Request for evaluateTimeseries.
message EvaluateTimeseriesRequest {
// Required. Client project name in the format of 'projects/{project}'.
string parent = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "cloudresourcemanager.googleapis.com/Project"
}
];
// Evaluate this time series without requiring it was previously loaded in
// a data set.
//
// The evaluated time series point is the last one, analogous to calling
// evaluateSlice or query with
// [detectionTime][google.cloud.timeseriesinsights.v1.EvaluateSliceRequest.detection_time] set to
// `timeseries.point(timeseries.point_size() - 1).time`.
//
// The length of the time series must be at least 10.
//
// All points must have the same time offset relative to the granularity. For
// example, if the [granularity][google.cloud.timeseriesinsights.v1.EvaluateTimeseriesRequest.granularity] is "5s", then the following
// point.time sequences are valid:
// - "100s", "105s", "120s", "125s" (no offset)
// - "102s", "107s", "122s", "127s" (offset is "2s")
// However, the following sequence is invalid as it has inconsistent offsets:
// - "100s", "105s", "122s", "127s" (offsets are either "0s" or "2s")
Timeseries timeseries = 2;
// The granularity of the time series (time distance between two consecutive
// points).
google.protobuf.Duration granularity = 3;
// The forecast parameters.
ForecastParams forecast_params = 4;
}
|